1,568 research outputs found

    Solutions for the optimization of the software interface on an FPGA-based NIC

    Get PDF
    The theme of the research is the study of solutions for the optimization of the software interface on FPGA-based Network Interface Cards. The research activity was carried out in the APE group at INFN (Istituto Nazionale di Fisica Nucleare), which has been historically active in designing of high performance scalable networks for hybrid nodes (CPU/GPU) clusters. The result of the research is validated on two projects the APE group is currently working on, both allowing fast prototyping for solutions and hardware-software co-design: APEnet (a PCIe FPGA-based 3D torus network controller) and NaNet (FPGA-based family of NICs mainly dedicated to real-time, low-latency computing systems such as fast control systems or High Energy Physics Data Acquisition Systems). NaNet is also used to validate a GPU-controlled device driver to improve network perfomances, i.e. even lower latency of the communication, while used in combination with existing user-space software. This research is also gaining results in the "Horizon2020 FET-HPC ExaNeSt project", which aims to prototype and develop solutions for some of the crucial problems on the way towards production of Exascale-level Supercomputers, where the APE group is actively contribuiting to the development of the network / interconnection infrastructure

    Axion phenomenology and θ\theta-dependence from Nf=2+1N_f = 2+1 lattice QCD

    Get PDF
    We investigate the topological properties of Nf=2+1N_f = 2+1 QCD with physical quark masses, both at zero and finite temperature. We adopt stout improved staggered fermions and explore a range of lattice spacings a∼0.05−0.12a \sim 0.05 - 0.12 fm. At zero temperature we estimate both finite size and finite cut-off effects, comparing our continuum extrapolated results for the topological susceptibility χ\chi with predictions from chiral perturbation theory. At finite temperature, we explore a region going from TcT_c up to around 4 Tc4\, T_c, where we provide continuum extrapolated results for the topological susceptibility and for the fourth moment of the topological charge distribution. While the latter converges to the dilute instanton gas prediction the former differs strongly both in the size and in the temperature dependence. This results in a shift of the axion dark matter window of almost one order of magnitude with respect to the instanton computation.Comment: 24 pages, 12 figures, 5 tables, final version published in JHE

    Recent progress on QCD inputs for axion phenomenology

    Get PDF
    The properties of the QCD axion are strictly related to the dependence of strong interactions on the topological parameter theta. We present a determination of the topological properties of QCD for temperatures up to around 600 MeV, obtained by lattice QCD simulations with 2+1 flavors and physical quark masses. Numerical results for the topological susceptibility, when compared to instanton gas computations, differ both in size and in the temperature dependence. We discuss the implications of such findings for axion phenomenology, also in comparison to similar studies in the literature, and the prospects for future investigations.Comment: Invited talk at XII Quark Confinement, 29 August - 3 September, 2016, Thessaloniki, Greece, 9 pages, 6 figure

    Nuclear factor kB as a target for new drug development in myeloid malignancies.

    Get PDF
    The transcription nuclear factor k B (NF-kB) can intervene in oncogenesis through to its capacity to regulate the expression of a large number of genes that regulate apoptosis, cell proliferation and differentiation as well as inflammation, angiogenesis and tumor migration. Impaired NF-kB activity has been demonstrated not only in solid cancers but also in various types of hematologic malignancies including acute myeloid leukemia, chronic myelogenous leukemia and in a subset of myelodysplastic syndromes. The underlying mechanisms, illustrated in the text and although quite diverse in different diseases, provide the rationale for new therapeutic strategies combining different NF-kB or proteasome inhibitors. It has, therefore, been proposed that inhibition of NF-kB could be an adjuvant therapy for cancer and many phase I/II clinical studies are ongoing with different inhibitors. This review highlights the in vitro and in vivo results of NF-kB inhibition in myeloid malignancies

    Choline and Choline alphoscerate Do Not Modulate Inflammatory Processes in the Rat Brain

    Get PDF
    Choline is involved in relevant neurochemical processes. In particular, it is the precursor and metabolite of acetylcholine (ACh). Choline is an essential component of different membrane phospholipids that are involved in intraneuronal signal transduction. On the other hand, cholinergic precursors are involved in ACh release and carry out a neuroprotective effect based on an anti-inflammatory action. Based on these findings, the present study was designed to evaluate the effects of choline and choline precursor (Choline alphoscerate, GPC) in the modulation of inflammatory processes in the rat brain. Male Wistar rats were intraperitoneally treated with 87 mg of choline chloride/kg/day (65 mg/kg/day of choline), and at choline-equivalent doses of GPC (150 mg/kg/day) and vehicle for two weeks. The brains were dissected and used for immunochemical and immunohistochemical analysis. Inflammatory cytokines (Interleukin-1β, IL-1β; Interleukin-6 , IL-6 and Tumor Necrosis Factor-α, TNF-α) and endothelial adhesion molecules (Intercellular Adhesion Molecule, ICAM-1 and Vascular cell Adhesion Molecule, VCAM-1) were studied in the frontal cortex, hippocampus, and cerebellum. The results clearly demonstrated that treatment with choline or GPC did not affect the expression of the inflammatory markers in the different cerebral areas evaluated. Therefore, choline and GPC did not stimulate the inflammatory processes that we assessed in this study
    • …
    corecore